The Role of Surface-Bound Dihydropyridine Analogues in Pyridine-Catalyzed CO2 Reduction over Semiconductor Photoelectrodes
نویسندگان
چکیده
We propose a general reaction mechanism for the pyridine (Py)-catalyzed reduction of CO2 over GaP(111), CdTe(111), and CuInS2(112) photoelectrode surfaces. This mechanism proceeds via formation of a surface-bound dihydropyridine (DHP) analogue, which is a newly postulated intermediate in the Py-catalyzed mechanism. Using density functional theory, we calculate the standard reduction potential related to the formation of the DHP analogue, which demonstrates that it is thermodynamically feasible to form this intermediate on all three investigated electrode surfaces under photoelectrochemical conditions. Hydride transfer barriers from the intermediate to CO2 demonstrate that the surface-bound DHP analogue is as effective at reducing CO2 to HCOO- as the DHP(aq) molecule in solution. This intermediate is predicted to be both stable and active on many varying electrodes, therefore pointing to a mechanism that can be generalized across a variety of semiconductor surfaces, and explains the observed electrode dependence of the photocatalysis. Design principles that emerge are also outlined.
منابع مشابه
A functionalised nickel cyclam catalyst for CO₂ reduction: electrocatalysis, semiconductor surface immobilisation and light-driven electron transfer.
The immobilisation of electrocatalysts for CO2 reduction onto light harvesting semiconductors is proposed to be an important step towards developing more efficient CO2 reduction photoelectrodes. Here, we report a low cost nickel cyclam complex covalently anchored to a metal oxide surface. Using transient spectroscopy we validate the role of surface immobilisation on enhancing the rate of photoe...
متن کاملPhotocatalytic Reduction of CO2 to Formaldehyde: Role of Heterogeneous Photocatalytic Reactions in Origin of Life Hypothesis
Photocatalytic reduction of carbon dioxide to formaldehyde was investigated on four semiconductor photocatalysts (FeS, FeS/FeS2, NiO and TiO2). The reaction was carried out in continues flow of CO2 gas bubbled into the reactor. Semiconductor photocatalysts were characterized by X-Ray diffraction (XRD) and Diffuse Reflectance Spectroscopic (DRS) methods. Sulfide ion was used as hole scavenger. T...
متن کاملPhotocatalytic Reduction of CO2 to Formaldehyde: Role of Heterogeneous Photocatalytic Reactions in Origin of Life Hypothesis
Photocatalytic reduction of carbon dioxide to formaldehyde was investigated on four semiconductor photocatalysts (FeS, FeS/FeS2, NiO and TiO2). The reaction was carried out in continues flow of CO2 gas bubbled into the reactor. Semiconductor photocatalysts were characterized by X-Ray diffraction (XRD) and Diffuse Reflectance Spectroscopic (DRS) methods. Sulfide ion was used as hole scavenger. T...
متن کاملDirected Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction.
Reducing carbon dioxide with a multicomponent artificial photosynthetic system, closely mimicking nature, represents a promising approach for energy storage. Previous works have focused on exploiting light-harvesting semiconductor nanowires (NW) for photoelectrochemical water splitting. With the newly developed CO2 reduction nanoparticle (NP) catalysts, direct interfacing of these nanocatalysts...
متن کاملSelective Mono Bromination of 1,4-Dihydropyridines
2-monobromomethyl 1,4-dihydropyridines is selectively synthesized by bromination of the parent compound by 1.1 equivalents of pyridinium bromide perbromide in dichloromethane/pyridine at -20 °C. The same reagent in dichloromethane at 0 °C produce the 2,6-bis(bromomethyl) 1,4-dihydropyridines.
متن کامل